Exercise 25

Find the derivative of the function using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
f(x)=x^{2}-2 x^{3}
$$

Solution

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-2(x+h)^{3}\right]-\left(x^{2}-2 x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{2}+2 x h+h^{2}\right)-2\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)\right]-x^{2}+2 x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}-2 x^{3}-6 x^{2} h-6 x h^{2}-2 h^{3}\right)-x^{2}+2 x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-6 x^{2} h-6 x h^{2}-2 h^{3}}{h} \\
& =\lim _{h \rightarrow 0}\left(2 x+h-6 x^{2}-6 x h-2 h^{2}\right) \\
& =2 x-6 x^{2}
\end{aligned}
$$

The domain of $f(x)$ is $\{x \mid-\infty<x<\infty\}$, and the domain of $f^{\prime}(x)$ is $\{x \mid-\infty<x<\infty\}$. $f(x)$ and $f^{\prime}(x)$ are polynomials, so any number can be plugged into them.

